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ABSTRACT

This report addresses the seccond part of a HYDRONAUTICS,
Incorporated study, which was performed to determine the effect
of wind and a.spatially varying subsurface current field on
both the wind-induced drift layer and the surface-wave spectrum.
Steady state wind-wave-current interactions were established
over a region of uniform current gradients which simulated an
internal-wave-fixed measuring system. Wave-height spectra
were recorded by HYDRONAUTICS while wave—slopo'spoctra were
simultaneously made with a Digital Video System by Riverside
Research Institute. The resulting data are expected to pro-
vide a firm foundation for theorectical arguments concerning
the question of relaxation phenomena in the wind-drift layer.
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I. INTRODUCTION

The present series of tests are part of a larger effort
aimed at quantitatively delineating the physical processes in-
volved in the interactions of internal waves and surface waves,
HYDRONAUTICS, Incorporated has been involved in different theo-
retical and experimental aspects of this program since 1972, and
has submitted nine reports on the subject to date. The present
report addresses an experimental test series on resonant wind-
wave-current interactions, the second Joint effort of HYDRONAU-
TICS, Incorporated and Riverside Research Institute. The work
was done in the HYDRONAUTICS Wind-Wave Pac111ty during the fall

of 1975.

The purpose of this report is to present the hydrodynamic
measurements and preliminary findings of HYDRQNAUTICS’ 1975 test
series., The complementary work conducted in the Wind-Wave Facil-
ity will be reported by Riverside Research Institute under their
separate cover. In particular, the spatial wind-wave spectra
taken with the Digital Video System (DVS) will be presented. It
i1s anticipated that another report aimed at collaborating the
flow field and surface wave spectra measurements with existing
theoretical predictions will be prepared by HYDRONAUTICS in the
near future,

The first laboratory study performed Jointly by HYDRONAUTICS,
Incorporated and Riverside Research Institute was conducted during
the early fall of 1974 (References 1 and 2). The results of these
tests were valuable in designing the present study and in making
the necessary facility changes for the refined 1975 test sceries.

The objective of the second experimental study was to im-
prove upon and complete the effort of the previous year, In addi-
tion further refinements in the RRI-DVS demonstrated a greater
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level of confidence in this system. For the purpose of the pres-

ent report, it is sufficient to point out that both the experi-

mental findings of 1974 and the theorctical predictions indicate

that a TV system accuracy of better than 1/2 Db (or 5% in wave

energy) would be necessary for measurecment significance., This 1/2

Db accuracy is directly related to the small magnitude of nonreson-

ant interactions between wind-generated-suriface waves and subsur-

face current fields, Other improvements in the present experiments

over last year's include increased accuracy in flow ficld measure-

ment, better reproducibility of a given flow field condition, and

a more uniform wind velocity profile above the water surface. Care |
was taken to insure that an accuracy of *5% (or better) was main- |
tained throughout the measurements. The largest improvements over

1974 test conditions are a result of the new current system. The ,
earlier testing had been plagued with large scale vorticity which

was transmitted to the test section after its inception at the cur-

rent generating impeller. As a result of new diffusing devices,

dye injections no longer indicated significant vorticity. -

Existing theorctical models have been briefly reviewed in 1
Reference 1. The driving force behind the present experimental
work has been the urgent need for data to refine ongoing theoreti-
cal efforts, The question of how to draw correspondence between
the conditions in the laboratory and those found in the oceanic
environment 1s an important one which is being addressed in a com-
panion study at HYDRONAUTICS.

Section II contains a description of the modified Wind-Wave
Facility, its operational characteristics, and the physical
measurements taken in 1it. Section III describes the experimental
procedures and results, 1In Section IV the results are summarized
and discussed, with concluding remarks and suggestions for further

research to be found in Scction V,



, T

HYDRONAUTICS, INCORPORATED
-3-

IT. EXPERIMENTAL FACILITIES AND MEASUREMENTS

IT.1 Wind-Wave-Current Facility

The HYDRONAUTLCS wind-wave-current facility, shown schemat-
lcally in Figure 1, is basically a 1.5 mswide, 1.55 m-deep, and
22 m~long water tank. An axial flow fan, which is driven at an
adjustable speed by an electric motor, is located at the upctream
end, To avoid the problem of wave reflections that would occur
in any tank of finite length, a permeable wave absorber has been
installed at the downstream end. A removable, cectional cover
has been placed on the tank to create a wind tunnecl 31 cms-high
(nominal) over a water depth of 124 cms (nominal)., The cross
scctional area of the air streanm may be varied by changing the
water level., Wind Sspceds up to 13 m/sec may be generated over
the water surface at the nominal wind tunnel height,

Surface waves may be gencrated mechanically by a wave
paddle located at the upwind end of the tank. The paddle con-
$L8ts of a stiff plate hinged at the tank bottom and driven by
an clectric motor through a variable speed reducer and an adjust-
able linkage. The frequency and amplitude of the paddle's motion
arc independently adjustable.,

The facility is cquipped with a variable current gencra-
tion system also showm in Figure 1. The present system is an
inproved version of that used in the 1974 wind-wave-current
tests. 1t consicts of a false bottom or sutmerged beach and a
recirculating pump system, including a reversible inpeller,
appropriate ducting, turﬁing vanes and flow straichteners. The
submerged beach is supported from below on adjustable screw
threads which are convenicently accecsible from above, The beach
may be positioned at any inclination over thoe range from 0 to
2.65 degrees by cranking on the support serews.  The turning,
vanes and flow diffusing and straightening scctions were designed
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and finely adjusted to provide two-dimensional current flow
over the beach in cither the upwind (adverse) or the downwind
(favorable) dircctions. In the favorable direction the current
is uniform across the flow to within fS%. In the adverse diree-
tion, however, owing to gcometiric and space limitations in the
cdverse flow diffusor scction, the current flow nonuniformity
increases to about flo% over a given cross section., IExtensive
calibrations have been carried out on the current system and

are presented in the next section.

Thie primary flow variables in the wind-wave-current facil-
ity arc the wind speed and the artificial current direction,
specd and streamwise gradient. The wind speed is controlled by
the RPM of the fan motor. The current direction is determined
by the sense of rotation of the impeller. The current gradient
is controlled by the inclination of the beach, while thc local
current magnitude is direcctly related to the impeller RPM and
the inclination of the beach. 1t is the current Evedient that
cnables the simulation of certain key aspects of an internal
wave using a stationary current system, in that an equivalent
internal waveclength or time-scale for a propagating current can
be defined, It shewld be noted, however, that all measurements

arc Made relative to a coordinate system that effectively
"rides" on a stationary internal wave. This point must be eon-

sidered carefully before comparing the experimental laboratory

data to other data or to theoretical predictiomns .

1.2 Moasurements

IT.2.1 Wind Profiles

Two methods were tried to determine the wind velocity
profile above the water; hot wire anemomentry and pitot-static
manomecter measurements.  Simultancous use of both devices within
the wind-wave facility gave reasonable results with one stringent
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limitation. When water droplets or spray contacted the hot
wire device, thermal stresses led to wire failures. Though
wire temperature was reduced to its lowest practical value,
failures remained numerous, As a result, hot wire ancmometry
was discarded as a useful tool because of its frailly under

near surface test conditions,

The wind profilef imcluded in ‘the present repori wers
taken with a pilot-static probe and an alcohol micromanometer,
The pitot-static probe was mounted on a motorized "A" frame for
vertical and transverse profiles of the test section., Measure-
ments, however, were taken at discreet intervals with the probe
held fixed rather than with the probe continuously traversing
the test section. In this way, wave-generated fluctuations in
the air stream could be time-averaged., The output from the
micromanomater was converted to an eleclrical signal by install-
ing & simple wire capacitance probe within the glass tubing of
the manometer. A parallel glass tube provided visual confirma-
tion of the reading. The electrical signal was displayed on a
strip chart recorder so that fluctustions in near=surfece air-
stroam veloecities could be averaged., This cighal was also used
to check for gross distortions 1In fixed-point veloeities whilch
might be due to relatively slow scliche-like motions within the
tank.,

s has been our previous experience, the wind velocity
profile was found to follow the logarithmic law over with some
interval above the water surfuace.

U

U = tn (z/z) (1] .

Friction velocities (Uy) and cquivalent roughness
lengths (zo) wvere inferred from Equation [1] by means of a semi-

log plot of the measured wind veloclity profiles, This technigue
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while easily and commonly employed, suffers from limited accuracy
inherent in fitting a straight line through experimental data.
(Throughout the present test set, irrcgularities in the wind
velocity profile were corrected by a fine mesh wire screen. A
series of detailed wind velocity profiles showed that the char-
acteristics of the alr flow were improved by the presence of this

screen,

Tests were also undertaken to determine the effect of small
adverse or favorable (with respect to the wind direction) cur-
rents on the friction velocity (for a constant wind speed). Over

the range

U
-1.25 < U—C < 1.25
S

vhere UC is the current speed and US 1s the surface drift under

he action of wind, no measurable changes in U, could be discerned,
Repeated measurements for the same flow conditions suggest that
our accuracy in determining U, was on the order of *5%. ko (RE

1t appears that the effects of current (over the range of values
tested) on the shear veloclty are small and negligible compared

to the accuracies attained in the prescent experiments.
II.2.2, Surface Wave Characteristics

The principle diagnostic tool for the present tests was
the RRI-TV camera system which is capable of measuring the two-
dimensional surface wave slope spectrum over a given spatial view
patch, To supplement and provide an independent check on the RRI
data, an alternate means of simultaneously measuring surface wave
characteristics was considered to be of value, Conscquently, sur-
face wave data were also taken by means of capaciltance wire probes.
Repeated calibrations demonstrated that these teflon-coated probes

have a flat Trequency response cver the range ol 0-30 Hz and an
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output voltage that varied lincarly with probe submergence. Two
probes were positioned along the longitudinal axis of the wind-
wave tank at a-variable separation (L). Their output voltages
werc stored on separate channels of an FM tape reccorder for later

processing,

The output signal from a calibrated capacitance wave-
helight probe gives the position of the water surface at a fixed
polnt in spacc as a function of time. The output of the two
wave-height probes was reduced to yield power spertra, The util-
Lty of this precentation for the present study lies primarily in
the reference point it provides for reduction of the RRI data.
opecifically, the temporal frequencics of surface waves generated
in the wind-wave facility, which can be measured directly tTrom a
power spectrum of the wind-height probe signal, are recoverable
from a dynamic analysis of the RRI slope cpectral data (Rererence
M). The accuracy of this dynamic analycis is poor at the lower
wave frequencles, particularly at the trequency of the dominant
wave, but improves considerably for the high frequencies. A
power cpectrum of the wave-height probe signal, on the other hand,
provides a very accurate measurc of the Trequency of the dominant
wave., It has been found that reduction and analysis of the RRI-
TV data was expedited and improved by the wave~height probe data.
This point will be discussed more fully in forthcoming RRI and
HYDRONAUTICS, Incorporated reports on the present tests.

The simultancous use of two wave-height probes cnables
the computation of two-point (spatial) cross correlations and
cross spectra. Irom cross correlations, the phace speed Cp o’ the
dominant surface wave may be cotimated by the relationcship (Refer-
ence 3)

(2]

-

p
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where T is the time by which one signal must be delayed relative
to the other for maximum correlation, and L is the probe longi-
tudinal ceparation (generally set at less than onec-half the domi-~
nant wavelength, XD). The crous spectrum, which Ls the Fourier
transform of the crosc correlation, gives, in principle, the
phase speed for cach wave component precent in the surface wave
spectrum, Tn practice, problems of aliuwsing wavelengths shorter
than the wave-helight probe scparation, and of low signal-to-noise
ratio limit the useful Trequency range of the crose spectrum
technique (Reference 3). In the proesent case, L was selected to
avold spatial allasing and attontion was focused in the Vi clmiciy
of the dominant wave. The phase speed for cach frequency compon-

ent is costimated as

21wl,
C (w) = = :
p( ) 2 (w) 4 (3]

where w lv the wave frrequency in Hertz and & ic the phase angle

computed from the ratio of the imaginary to the real parts of

the cross spectrum ags

Ro(w

$(w) = tan™? (— Ll (4]

The data from the wave-heleht probes were processed
on a Unigon last Fourier Transform Analyzer—which is basically
a hard-wired, spoecial purpose mini(digital) computer—and plotted
on an X-Y plotter. Such wind-wave speclra are included in later
data sections of this report., Baged upon Phillips' theory (Ref-
crences 4 oand 5) and feteh Limited laboratory conditions, one
would exXpueet an overdriven peak, shallow mid-range, and an acym-
Lotic approach to a -5 slope only at the higher frequencics (Ref-

erence 0),
11.2.3 Surface Drif't Currents

The drif't current immodiate to the water surface was

measured by repeatedly timing floats ol various cizes between
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two stations in the wind direction and then averaging the re-
sults. Spherical particles with dimensions of 1.90, 3.18, 6.35
and 12,70 mm and a specific gravity of 0.95 werc uczed as floats.
The velocity of each float was taken as the drift current at the
depth of the centroid of the longitudinally projected area of
the submerged portion of the float. For the floats used in the
present experiment, the corresponding centroid depths have been
stimated (geometrically) to be 0.71, 1.19, 2.37 and 4,72 mm,
recpectively, For many of the wind-current sctups tested, use

of the two larger floats was impractical if not-hltoucthcr im-
possible. For a few cases no float data could bs taken because
of the etffects of strong velocity gradients on the motion of the
floats. 1In particular, for cases with strong adverse subsurface
currents, the drift-layer profile connecting the downwind sur-
face drift to lhe upwind subsurface current has o z-1o Veloel ty
crossing (typically in the centimeter below the mean surface),
For such cases the floats were observed to meander, stall, reverse
directions and, gencrally, to bchave erratically over the timed-
travel interval., All data from erratic floats was considered

to be unacceptable., All trials with a particular float which
execcuted erratic motion under a flow setup werc discontinued and

disreogarded,

This procedurc of disregarding float data when the
float motion was erratic over a large percentage (60% or more)
of the timing runs represents o policy change from last year's
experiments (Reference I At thas time, owin - to the known
three-dimensionalities in the mean current flow, some meandering
of the floats was expected. A "presmoothing" or "riltering" was
built into that data by arbitrarily defining as acceptable only
those floats which remained within a tlS cm wide band from the
drop point along the longitudinal divection over the float travel
distance, The number of trials was incrcasoed until the rcquired

number of successful runs (10) was obtalned. In the present
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experiments, no gross three-dimensionalities were prescnt in the
mean current flow, Consequently, erratic float behavior cowlid
only be attributed to the response of the floats to the above-
mentloned drift layer characteristics, i.e., velocity gradient
and zero velocity crossings. This point will be taken up again
later when the present data is compared to last ycar's.

The efficiency of the timed-float teehnique has been
demonstrated in many studies of the drift layer, including both
the present and last year's study. Albeit cumbersome, time con-
suming, open to a number of unanswerable questions, and unesthe
tic, no better technique has been discovered as yet. The impor-
tant questions of accuracy and reproducibility of results obtained
with the time-float technique have been taken up in congiderable
detail in Refercnce 1. There it ig estimated that an accuracy on
the order of 5% (or better) is attained by taking the average of
the middle light of ten float trials (ten, throw out the high and
the low) over a one-meter travel distance,

IT.2.4 Subsurface Currents

There are several devicoeg available for measuring the
speed of the cubsurface current flows encountered in the present
study. These include:

1. Hot film ancmomet

2. Timed-neutrally bu floats
3. Time-dye streaks

h. Pitot-static probes

5. DNeyrpic velocimeters

The first four have been used in the wind-wave facility im the
past with some degree of success. The last, a l'rench-made pro-
peller-ancmometer shown in Figure 2 wac introduced Just prior to
the present experiments. In-house calibrationc of the Neyrpieé
performed in an 80-ft long tow channcl have demonstrated its super-

lority over the other devices for reasons ot accuracy, and case of
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use., A calibration curve is presented in Figure 3 which demon-
strates remarkable linearity and an accuracy of 1% or better over

- the velocity range 3-150 cm/sec,

Utilizing Neyrpic velocimeters, detailed calibrations
of the current system were performed; the independent variables
are impeller rpm, inclination of beach (from the horizontal)
and location-fetch (x), lateral position (y) and denth (z).
Figure } presents current profiles for the case of favorable
currents (with the wind), along the beach inclined at 2.65 de-
grees. The current depth, excluding the lower boundary layer
along the beach, is gcen to be uniform to within TL%. Fipgure 5
presents current profiles for the case of adversc currents along
the same inclined beach. The deviation from uniformity here is
107

/0o

As discussed at some length in Reference 1, last year's
cxperiments were overshadowed by ambiguity which arose due to
the nonuniformity of the mean current flow produced by the pre-
vious current system. It was often impossible to scparate those
distortions of the wind-drift layer causcd by interactions be-
tween surtacce waves and subsurface=-spatially-varying currents
from those caused by strong three-dimensionality of the current
field itself. This subject will be taken up arain later on in
the present report. The point to be made here is that the cur-
rent field, provided by’ the current system in the present $tudy,
was uniform to a fine measure, which surgeste elimination of this
ambiguity. The uniformity of the present flow war demonstrated
both by V¢iocity measurements and by flow vicualization using
concentrated vegetable dyes . This brief deseription of the wind-

wave current facility, of its operating characteristics, and of
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the hydrodynamic measurcments taken in the present study, should
provide a foundation for the following discussion of the experi-
ments themselves,

ITI., THE EXPERIMENTS

ITI.1 Preliminary Considerations

Prior to the design of the present experimental program,
the results of the 1974 joint tests and the most veeent theo-
retical developments were reviewed in a meeting with M. King,
F. Lizzi and F. Nawar of RRI, A. Rubel of Advanced Technolog
Labs (ATL), J. Lewis of Techmate, and G, Elliott and R. Scotti
of HYDRONAUTLICS (Refcrence 7).

The intent was to bring modifications and improvements
into this year's tects to incure that the overall objectives of
the study were met. "The most stringent requirements for this
year's experiments was for greater accuracy both in the RRI-TV
camera measurement:s and in HYDRONAUTICS flow mcoasurements.  The
selection of the matrix of flow conditions to be Hested was als
important in the interect of producing discernable interaction

cffeets within a reasonable number of experimental flow setups.
IIT.1.1 FExperimental Accuracy

zlsting theoretical predictions (References 9 and 10)
suggest that spatial modulations, which may occur in the wind-
wave current facility under appropriate flow conditions, arc ex-

pected to be on the order of 20-25% or leus. Morcover, the effects



HYDRONAUTICS, INCORPORATED
B

are anticipated to be narrow-banded. The implications of these
predictions are clearly that a high level of experimental accur-
acy must be maintained throughout each phasce of the experimental
program to insure that such small effects can be discerned. The
stringent accuracy reaquirements imposed on the RRI-TV camera Sys-
tem will be discussed in a RRI technical report covering their
activities in the present experiments, Tor hydrodynamlc measure-
ments, as well as for reproducibility of flow cetup, an accuracy
of 159 was taken ac the outer bound of acceptability.

Hydrodynamic measurcments included:

1. mean wind speed

2. chear velocity (inferred from the mean wind
profile)

3. near surface drift (measurcd with floats)

b, subsurface current speed

. subcurface current gradient

6. reclative surface wave height of the dominant wave,

7. surfacc wave frequency of the dominant wave,

An accuracy of fﬁ% (or bvtter) wais attained for all of the above
measurements in the present tests. 1In addition, the following
measuremente were available from cross spoctral plots with an

accuracy of 1105 or better:

1. TPhase zpced of the dominant wave,
2. Wavelength of the dominant wave,
. Phase angle (between probes) of the

dominant wave,
ITT.1.2 3Selection of Tect Conditions

The following guidelines on the cholice of test-flow
conditions were arrived at by collaboration betwe. n ATL, Techmate
and HYDRONAUTICS3., Some independent thinking along these lines is
given in a pretest report, dated May 1975, by J. Lewis of Techmate
(Reference 8).
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A. Wind speed, U = 3.8, and 6.2 (m/sec)

The lower value was selected to maximize the
interaction phenomena. Below fapproximately) 3m/sec the surface
activity is small and difficult to measure quantitatively. The
higher value was sclected to include the effects of a significant
change in shear velocity.

B. Subsurface current, UC » both adverse and

favorable, U
3 C 3
- 5 £ ===z =
4 U 4

S

where Ug is the wind induced surface drift,

An avoldable and undesirable characteristics of the
wind-wave-current fecility was that changes in subsurface cur-
rents produced an eft'ective change of fetch at a fixed -tation.
Favorable currents decreased the feteh and adversce curronts in-
creased the feteh (at a fixed measuring station) relaiive to the
wind-only casce, This important point =111 be discuscad in greataor
detail in Scction IV, The larger values of current sread were
selected to maximize the interaction effects. Smaller values
were selected in accordance with what was practically possible in
the facllity to minimize the current-fetch effect,

1
)

sec

: R -2
C. Current gradient, 'Fi%l £ LO7% [

117.1.3 Matrix of IMlow Conditions Toutod

The twenty-cight differcent flow conditions wmich were
tected in the present experiments are deseribed in Tablez 2 and 53
the test matrix tor the 1975 Joint tests. Details of the wind
and subsurface current flows are given in Table 3, arranged accord-
ing to data-run number, ‘fThe following description explains the

rational behind the present data-run numbering system:

B refers to the beach; the number following B
indicates its orientation:
1l = 0 degree itneclination
h = 2,05 degree inclinaticn.
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C refers to the subsurface current; the
numbers following C indicate the cur-
rent generating impeller speed in RPM
(minus mean adverse flow),

W refers to the wind; the number follow-
ing W indicates the blower Speed in RPM,

P refers to the fetch; the numbers follow-
ing ' indicate the feteh, measured from
the point where the air stream first

touches the water, in centimeters,

M refers to the mechanical wave generator
(when in use); the numbers following M
indicate the speed of the motor-driven
shaft in RPM.

The last four digits give the month and day
on which the test was run,

In this year's experiments all tests were performed
at the same meaguring station, namely at 12,25 m from the point
where the air stream first contacts the water, Last ycar's
measurements were taken at an upstream station as well as to cn-
able discernment of strongly fetch dependent effects. Thig ms-
peet of the experiments was left out of the present tests in
order to more fully span the ranges of the parametcers in the

available time. .

I11.2 Experimental Recults

A disecucsed in Section IIT.1, the test metrix variables in-
¢clude:  wind speed, current velocity, beach angle, and mechanieal
wave presence. The data taken under the present test matrix ic
organized as shown in the Data Presentation Outline (Table 1),

eou

s Lo indicated, the data hag been divided into three basic groups:

flat beach results, inclined beach results, and mechanical/wind-

wave roesults,

—
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During the flat beach experimentation, two wind conditions
verc considered. At 3.8 meter/sccond, run numbers 1 through 11
were recorded,.while run numbers 12 through 15 were recorded at
6.2 m/sec, Since the objective of this aspect of the experimen-
tation was to determine the interactive efforts of a spatially
varying subsurface currents with the wind drift layer, a means
of direc¢tly compering wind drift layers i® necessary. This is
accomplished by subtracting the surface current with no wind (Uc)
from the "overall local drift current", U; , in a laboratory-

fixed-refercence frame,

q=U, -U [5]

The resulting value lg referred to as the "relative wind drift
velocity" (a). Among the data recorded at cach wind speed, are
conditions which have adverse (against the wind) currents and
tavorable (with the wind) currents of approximately equal magni-
tude., The drift layer pfofiles are thus presented in subgroups
where any shift in the malrix variables would be apparent, These
plots of q vs. Z (depth from surface) for various current combina-
tlons are presented &% both a linear and semi-logarithmic plot,
The information from the linhear plot allows one to better it a
line through the semi-log representation, thus giving the hest
value of the friction velocity (U,) (cce Figures 6 through 13).
For each of the data runs, the power spectra and wave-height
cross speclira were tmken a8 described eéarlier in this report,

[ )

The spectra are to be found in Figures 23-53,

During the inclined-beach experimentation, the same two wind
conditions were considered with various favorable and adverse cur-
rénts., The data présentation is completely analogous to the flat

beach condition as again shown in Table 1.

For secveral flat-beach conditions, mechanical waves were gen-

erated in the presence of known wind conditlons. The mechanical
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wave cxperimentation was limited to the lover wind speced of 3.8
meters/second. The measurements taken were restricted to wave-
height power and cross Sspectra,

IV. REGULTS DISCUSSED AND SUMMARIZED

Improvement of the mean-current- flow field for the 1975
test series has filled an important gap in the 1974 experimental
approach. As a result, the confidence placed in the present
test series is greater than that placed Qn earlier results. The
repeatability, both over the short (ceveral minutes) and long
(several weeks) time periods, was consistently below 5% and gener-
ally below TB% for water velocity measurements (sce Figures 4
and 5). 1In addition, corrections in cross-tank-wind-velocity
profiles have hopefully resulted in more reprecentative two-
dimensional-wind-wave spectra. Thus the emphases placed on the
two sets of data should reflect, %o some cxtent, the chaage in
confidence since the 1974 experimentation,

Figures 6, 8, 10 and 13 show the water velocity vs the loga-
rithm of depth over the range from 0.07 to 25 em, A logarithmic
depth scale enables all of the data to be plotted conveniently on
the same graph arid, more importantly, is useful in determining
the mean local value of the shear stress supported by the water
itself. The law of the wall may be written as

y & .

T, = % in A/ZO (6]
vhere B
U, = (%)" 1s the friction velocity,
K is the Von Karman constant, and

ZO is the equivalent roughness height
of the boundary surface or vall.
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Wu, Reference 11, has shown that in the case of the wind-
drift layer, Equation 6 may be rcwritten as
Ys - Up 1

W, = % in 277 (7]

where
U le the surfate drift veleocity

is the local drift velocity, and

Wy 15 the shear velocity on the

water side of the free surface.

In terms of the relative wind drift velocity (qa), Equation
(7] may be rewritten as - :
W,
¢ =U -U, = 4n Z + constant . 183

-

Thus, if the law of the wall is appfopriate, the value
of W, can be deduced from the slope of a log-linear plot of
q vs 4. Similarly, the valuec of U, may be inferred from a
plot of wind velocity vs distance above the free surface

through

o=

1 L
U*:UKW“(%) : [9]

A generally accepbed approximation of the alr/water inter-
rnee requires the shear stress in the alr to mateh that in the

waters; the following equation may be written:

p . W,*®
alr :
& [10]
pwater Uy?

whoere the exact equation would include a term relating the

momentum transtfer to the surface waves. The resulting ratio
W
X b .
T ¢ generally considered to be of the order 1/30. As shown in
X
Table 2, this approximate relation is valid for the present oxperi-

mentation.,
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During the 1974 test series, it was found that the relative-
wind-drift-velocity-profile (q) was shifted in velocity but main-
tained the same shape in the prescnce of spatially varying cur-
rent gradients. A relaxation time was associated with this shift
and its character assumed to be exponential. The rclaxation time
(t') was found from the reclation,

—T/'T !

(q - qo)downstream = (a - qo)upstream [11]

where

a = AX/ﬁ.average

Ax was the distance betwecen upstream and

downstream measurement stations,

was the average of the mecan veloci-
Uaverage =

ties at the given station and depth
q, was the "no current" wind drift velocity.

The experimental curves which demonstrate this phenomena are
glven in Refercnce 1.

Although only onc station was considered during the 1975 cxperi-
mentation, when subsurface current was varied, a shift in the rela-

tive-wind-drift velocity profilc was not observed. This would suggest
that: :
1. The boundary layer has relaxed completely at a fetech of

12.25 meters, (7.91 meters from the beach odge), or

2. The relaxation phenomena observed during the 1974 test
series was a manifestation of the three-dimensional structure of
the flow field.

The values of T' found in 1974 were ranged I'¥om 21 to 227
scconds (Reference 1). ‘'These measurements were taken with a dif-
ferent beach configuration, where the fetch was 8.3 moters with
the beach edge 2.56 meters from the test ctatlion. Thus, the 1974

and 1975 test results are taken at statlons which are nearly U

N
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meters apart physically with an effective separation of 5.35
meters 1f the respective current-gradient-lengths are considered.
If the relaxation phenomena exists and is describable through

the exponential relation given in Equation [10], then one can
predict the degree to which a drift layer should relax in moving
from the 1974 test location to the present location. The typi-
cal numbers chosen from Reference 2 for this prediction are given

below:

[ ]
effective relaxation length: 5.35 m
mean depth: 0.71 mm
favorable flow

Uaverage: 25.10 cm/sec

T: 21 seconds.

Thus one would expect a relaxation 1ength of 5.27% meters, while

the actual effective Separation was 5.35 meters. It would, there-

fore, seem reasonable that no relaxation related shift in the
relative-drift-layer plots was observed at the present feteh. ‘

In contrast, it may be that flow field distortions caused
or uccentuated the relaxation phenomena. In this case, the ab-
sence of shifts in the relative-wind-drift-layer profiles would
indicate an almost immcdiate recponse of the wind-drift layer to

spatially varying-subsurface current perturbations,

In addition to the considerations of current-related shifts
in the drift-layer profiile, it is interecting to note the drift-
layoer depths for various conditions as chown in Figures 0, B 1@,
and 13, These drift-layer depths appear to be a function of wind
speced, beach angle, and to some extent current direction., Figure
15 illustrates a tenuously detfined relation between beach angle,
wind speced and drift-layer depth. The error bars indicated in-

clude both favorable and adverse currents within thelr limits,
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However, it is generally observed that adverse currents are as-
soclated with shallower wind-drift layers. This is surprising
since adverse .currents increase the effective feteh and thus
allow more momentum transfer to the water, It is also noted
that the energy contained within the drift layer is a function
of the wind speed and beach angle. This is reflected in the
values of W, and drift-layer depth (8). The energy contained in
the wind-drift layer does not appear to be a function of current
magnitude/direction which is again surprising given fet.ch con-
siderations. No attempt is made to ecxplain the causes of these
observations at this time; however, future attempts should con-
sider physical constraints such as the ratio of wavelength to

in situ depth, Reynolds wave stress within the drift layer, and
the vertical velocity component which may add to turbulent mixing.

The surface wave cpectra modificaticns recorded by the RRI
Digital-Video-System (DVS) will be presented under their cover.
The temporal wave spectra recorded by HYDRONAUTICS, Incorporated
during the present test scries represent a significant improve-
ment over the 1974 data. TPigures 21 and 22 are presented as typi-
cal power spectra as 2corded during 1975. A line drawn on the
power spectrum of a slcpe cof -5 provides for comparison of the
high frequency portion of the spectrum in the wind-wave facility
to that predicted by Phillips (Referenccs 4 and 5) for the case
of infinite fetch., The agrecement is quite good, refleeting the
solution of probe-frequency-response problems. The dominant fre-
quency and relative amplitude measurcaents inferred from the power
gspectra slore are self-consistent with respect to current direc-
tion and magnitude, That is, as the current changes from strong
adverse to strong favorable, the dominant wave frequenclies are in-
creacing while the deminant wave amplitudes are decreacing, This
effect is duc to many intimately-rclated phenomena. As briefly

described in carlier sections, a change in current (magnitude and

. R



HYDRONAUTICS, INCORPORATED

-20.

direction) effectively changes the fetch for a given volume of
water as it moves down the tank. In addition, a fixed probe
will measure a differcnt frequency since the laboratory-fixed
reference frame is only "valid" for the zero current case.

This so-called reference frame is difficult to generalize for
the widely different roles which it must f£ill. For instance,
the cffective roughness length (k) scen by the wind is a func-
tion of wavelength and frequency in the wind-fixed rcference
frame. 1In this aspect, the roughness length is intimately re-
lated to the rate of cnergy transfer from the air to the water
and thus affects the cnergy contained in wave motion and wind-
drift boundary layer motion. The important point which this
raises 1s that cach aspcect of wind-wave-current interactions has
a specific refercnce frame which applies and this nced not be
the laboratory reference frame. Since wave height probes are
fixed in space, the information (C 5, A , f) which is obtained
from such probe is not directly applicable to the dynamics of
wind-wave-current interactions. Figures 17 through 20 describe
the relationship between the frequency of the dominant wave and
the subsurface current, as observed in the laboratory rcference
frame. A detalled discussion of the physics which would be ex-
pected to play a role in determining the shape of the afore-
mentioned plots is not addressed in this study. However, it is
important to note that the current related shifts in spectral
plots may be a result of dynamic interactions rather than strict
feteh eonsiderations. The pover spectra are presented for all
test conditions in Figures 23 through 53, while representative
cross spectra are given in Figures 41, 44, U6 and 48, The phase
angle, phase specd and dominant wav-:length are inferred from Lhe
cost spectra, The data obtained from these plots are alco gself-
consistent., Phase speeds and phase angles generally increasc
with favorable currents while wavelength grows chorter. The

spectral results arc summarized in Table 3.
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V. CONCLUDING REMARKS

A number of wind-wave-current phenomena have been documen-
ted during the present test program. The combined effects of
wind spced and direction, current-streamwise gradient, fetch,
and current dircction and magnitude on surface wave modulations
arc complicated, To develop an experimental test plan, which
would fully explote all experimental aspects of this problem,
would involve a very extensive effort. However, the two experi-
mental test serics which have been conducted to date have cer-
tainly provided a strong base for thcoretical work.

The question of a relaxation phenomena occurring within the
wind-drift layer remains open to interpretation by thobrists. A
final anticipated report should correclate the data from both
HYDRONAUTICS, Incorporated and Riverside Rescarch Institute with
theoretical predietions by Phillips and Véglio—Laurin. Experi-
mental work to date suggests that surface modulations in the
laboratory are very small; however, the appropriate scaling laws
for the open ccean conditions are only presently being worked out.
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FIGURE 2 - NYREPIC VELOCIMETER
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FIGURE 3 - CALIBRATION OF NYREPIC VELOCIMETER NO. 6272
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FIGURE 6 - NEAR-SURFACE DRIFT MEASUREMNTS - SEMILOG PLOT
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FIGURE 10 - NEAR-SURFACE DRIFT MEASUREMENTS - SEMILOG FLOT
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FIGURE 11 - NEAR-SURFACE DRIFT MEASUREMENTS
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